domingo, 25 de julio de 2010

La memoria, tipos de memoria, unidades de medida

La memorización consiste en la capacidad de registrar sea una cadena de caracteres o de instrucciones (programa) y tanto volver a incorporarlo en determinado proceso como ejecutarlo bajo ciertas circunstancias.
El computador dispone de varios dispositivos de memorización:
La memoria ROM La memoria RAM Las memorias externas. Un aspecto importante de la memorización es la capacidad de hacer ese registro en medios permanentes, básicamente los llamados "archivos" grabados en disco. El acumulador
La principal memoria externa es el llamado "disco duro", que está conformado por un aparato independiente, que contiene un conjunto de placas de plástico magnetizado apto para registrar la "grabación" de los datos que constituyen los "archivos" y sistemas de programas. Ese conjunto de discos gira a gran velocidad impulsado por un motor, y es recorrido también en forma muy veloz por un conjunto de brazos que "leen" sus registros. También contiene un circuito electrónico propio, que recepcióna y graba, como también lee y dirige hacia otros componentes del computador la información registrada.
Indudablemente, la memoria externa contenida en el disco duro es la principal fuente del material de información (data) utilizado para la operación del computador, pues es en él que se registran el sistema de programas que dirige su funcionamiento general (sistema operativo), los programas que se utilizan para diversas formas de uso (programas de utilidad) y los elementos que se producen mediante ellos (archivos de texto, bases de datos, etc.). Unidades de Memoria
BIT: puede tener valore de 0 y 1, es decir sistema binario BYTE: son 8 Bits. KILOBYTE (KB) = 2 **10 bytes MEGABYTE (MB) = 2 ** 10 Kilobyte = 2 ** 20 Bytes GIGABYTE (GB) = 2** 10 Megabyte = 2** 30 Bytes TERABYTE (TB) =2**10 Gigabyte = 2**40 BytesEs necesario aclarar que las unidades son infinitas, pero las antes nombradas son las usadas.
BIT: su nombre se debe a la contracción de Binary Digit, es la mínima unidad de información y puede ser un cero o un uno
BYTE: es la también conocida como el octeto, formada por ocho bits, que es la unidad básica, las capacidades de almacenamiento en las computadoras se organiza en potencias de dos, 16, 32, 64.
Las demás unidades son solo múltiplos de las anteriores, por ello cada una de ellas están formadas por un determinado numero de Bits.
La memoria principal o RAM
Acrónimo de Random Access Memory, (Memoria de Acceso Aleatorio) es donde el ordenador guarda los datos que está utilizando en el momento presente. Se llama de acceso aleatorio porque el procesador accede a la información que está en la memoria en cualquier punto sin tener que acceder a la información anterior y posterior. Es la memoria que se actualiza constantemente mientras el ordenador está en uso y que pierde sus datos cuando el ordenador se apaga.
Cuando las aplicaciones se ejecutan, primeramente deben ser cargadas en memoria RAM. El procesador entonces efectúa accesos a dicha memoria para cargar instrucciones y enviar o recoger datos. Reducir el tiempo necesario para acceder a la memoria, ayuda a mejorar las prestaciones del sistema. La diferencia entre la RAM y otros tipos de memoria de almacenamiento, como los disquetes o discos duros, es que la RAM es mucho más rápida, y se borra al apagar el ordenador.
Es una memoria dinámica, lo que indica la necesidad de "recordar" los datos a la memoria cada pequeños periodos de tiempo, para impedir que esta pierda la información. Eso se llama Refresco. Cuando se pierde la alimentación, la memoria pierde todos los datos.
"Random Access", acceso aleatorio, indica que cada posición de memoria puede ser leída o escrita en cualquier orden. Lo contrario seria el acceso secuencial, en el cual los datos tienen que ser leídos o escritos en un orden predeterminado.
Es preciso considerar que a cada BIT de la memoria le corresponde un pequeño condensador al que le aplicamos una pequeña carga eléctrica y que mantienen durante un tiempo en función de la constante de descarga. Generalmente el refresco de memoria se realiza cíclicamente y cuando esta trabajando el DMA. El refresco de la memoria en modo normal esta a cargo del controlador del canal que también cumple la función de optimizar el tiempo requerido para la operación del refresco. Posiblemente, en más de una ocasión en el ordenador aparecen errores de en la memoria debido a que las memorias que se están utilizando son de una velocidad inadecuada que se descargan antes de poder ser refrescadas.
Las posiciones de memoria están organizadas en filas y en columnas. Cuando se quiere acceder a la RAM se debe empezar especificando la fila, después la columna y por último se debe indicar si deseamos escribir o leer en esa posición. En ese momento la RAM coloca los datos de esa posición en la salida, si el acceso es de lectura o coge los datos y los almacena en la posición seleccionada, si el acceso es de escritura.
La cantidad de memoria Ram de nuestro sistema afecta notablemente a las prestaciones, fundamentalmente cuando se emplean sistemas operativos actuales. En general, y sobretodo cuando se ejecutan múltiples aplicaciones, puede que la demanda de memoria sea superior a la realmente existente, con lo que el sistema operativo fuerza al procesador a simular dicha memoria con el disco duro (memoria virtual). Una buena inversión para aumentar las prestaciones será por tanto poner la mayor cantidad de RAM posible, con lo que minimizaremos los accesos al disco duro.
Los sistemas avanzados emplean RAM entrelazada, que reduce los tiempos de acceso mediante la segmentación de la memoria del sistema en dos bancos coordinados. Durante una solicitud particular, un banco suministra la información al procesador, mientras que el otro prepara datos para el siguiente ciclo; en el siguiente acceso, se intercambian los papeles.
Los módulos habituales que se encuentran en el mercado, tienen unos tiempos de acceso de
60 y 70 ns (aquellos de tiempos superiores deben ser desechados por lentos). Es conveniente que todos los bancos de memoria estén constituidos por módulos con el mismo tiempo de acceso y a ser posible de 60 ns.
Hay que tener en cuenta que el bus de datos del procesador debe coincidir con el de la memoria, y en el caso de que no sea así, esta se organizará en bancos, habiendo de tener cada banco la cantidad necesaria de módulos hasta llegar al ancho buscado. Por tanto, el
ordenador sólo trabaja con bancos completos, y éstos sólo pueden componerse de módulos del mismo tipo y capacidad. Como existen restricciones a la hora de colocar los módulos, hay que tener en cuenta que no siempre podemos alcanzar todas las configuraciones de memoria. Tenemos que rellenar siempre el banco primero y después el banco número dos, pero siempre rellenando los dos zócalos de cada banco (en el caso de que tengamos dos) con el mismo tipo de memoria. Combinando diferentes tamaños en cada banco podremos poner la cantidad de memoria que deseemos.
Tipos de memorias RAM
DRAM: acrónimo de "Dynamic Random Access Memory", o simplemente RAM ya que es la original, y por tanto la más lenta.
Usada hasta la época del 386, su velocidad de refresco típica es de 80 ó 70 nanosegundos
(ns), tiempo éste que tarda en vaciarse para poder dar entrada a la siguiente serie de datos. Por ello, la más rápida es la de 70 ns. Físicamente, aparece en forma de DIMMs o de SIMMs, siendo estos últimos de 30 contactos.
FPM (Fast Page Mode): a veces llamada DRAM, puesto que evoluciona directamente de ella, y se usa desde hace tanto que pocas veces se las diferencia. Algo más rápida, tanto por su estructura (el modo de Página Rápida) como por ser de 70 ó 60 ns. Es lo que se da en llamar la RAM normal o estándar. Usada hasta con los primeros Pentium, físicamente aparece como SIMMs de 30 ó 72 contactos (los de 72 en los Pentium y algunos 486).
Para acceder a este tipo de memoria se debe especificar la fila (página) y seguidamente la columna. Para los sucesivos accesos de la misma fila sólo es necesario especificar la columna, quedando la columna seleccionada desde el primer acceso. Esto hace que el tiempo de acceso en la misma fila (página) sea mucho más rápido. Era el tipo de memoria normal en los ordenadores 386, 486 y los primeros Pentium y llegó a alcanzar velocidades de hasta 60 ns. Se presentaba en módulos SIMM de 30 contactos (16 bits) para los 386 y 486 y en módulos de 72 contactos (32 bits) para las últimas placas 486 y las placas para Pentium. EDO o EDO-RAM: Extended Data Output-RAM. Evoluciona de la FPM. Permite empezar a introducir nuevos datos mientras los anteriores están saliendo (haciendo su Output), lo que la hace algo más rápida (un 5%, más o menos). Mientras que la memoria tipo FPM sólo podía acceder a un solo byte (una instrucción o valor) de información de cada vez, la memoria EDO permite mover un bloque completo de memoria a la caché interna del procesador para un acceso más rápido por parte de éste. La estándar se encontraba con refrescos de 70, 60 ó
50 ns. Se instala sobre todo en SIMMs de 72 contactos, aunque existe en forma de DIMMs de 168.
La ventaja de la memoria EDO es que mantiene los datos en la salida hasta el siguiente acceso a memoria. Esto permite al procesador ocuparse de otras tareas sin tener que atender a la lenta memoria. Esto es, el procesador selecciona la posición de memoria, realiza otras tareas y cuando vuelva a consultar la DRAM los datos en la salida seguirán siendo válidos. Se presenta en módulos SIMM de 72 contactos (32 bits) y módulos DIMM de 168 contactos (64 bits).
SDRAM: Sincronic-RAM. Es un tipo síncrono de memoria, que, lógicamente, se sincroniza con el procesador, es decir, el procesador puede obtener información en cada ciclo de reloj, sin estados de espera, como en el caso de los tipos anteriores. Sólo se presenta en forma de DIMMs de 168 contactos; es la opción para ordenadores nuevos.
SDRAM funciona de manera totalmente diferente a FPM o EDO. DRAM, FPM y EDO transmiten los datos mediante señales de control, en la memoria SDRAM el acceso a los datos esta sincronizado con una señal de reloj externa.
La memoria EDO está pensada para funcionar a una velocidad máxima de BUS de 66 Mhz, llegando a alcanzar 75MHz y 83 MHz. Sin embargo, la memoria SDRAM puede aceptar velocidades de BUS de hasta 100 MHz, lo que dice mucho a favor de su estabilidad y ha llegado a alcanzar velocidades de 10 ns. Se presenta en módulos DIMM de 168 contactos
(64 bits). El ser una memoria de 64 bits, implica que no es necesario instalar los módulos por parejas de módulos de igual tamaño, velocidad y marca
PC-100 DRAM: Este tipo de memoria, en principio con tecnología SDRAM, aunque también la habrá EDO. La especificación para esta memoria se basa sobre todo en el uso no sólo de chips de memoria de alta calidad, sino también en circuitos impresos de alta calidad de 6 o 8 capas, en vez de las habituales 4; en cuanto al circuito impreso este debe cumplir unas tolerancias mínimas de interferencia eléctrica; por último, los ciclos de memoria también deben cumplir unas especificaciones muy exigentes. De cara a evitar posibles confusiones, los módulos compatibles con este estándar deben estar identificados así: PC100-abc-def. BEDO (burst Extended Data Output): Fue diseñada originalmente para soportar mayores velocidades de BUS. Al igual que la memoria SDRAM, esta memoria es capaz de transferir datos al procesador en cada ciclo de reloj, pero no de forma continuada, como la anterior, sino a ráfagas (bursts), reduciendo, aunque no suprimiendo totalmente, los tiempos de espera del procesador para escribir o leer datos de memoria.
RDRAM: (Direct Rambus DRAM). Es un tipo de memoria de 64 bits que puede producir ráfagas de 2ns y puede alcanzar tasas de transferencia de 533 MHz, con picos de 1,6 GB/s. Pronto podrá verse en el mercado y es posible que tu próximo equipo tenga instalado este tipo de memoria. Es el componente ideal para las tarjetas gráficas AGP, evitando los cuellos de botella en la transferencia entre la tarjeta gráfica y la memoria de sistema durante el acceso directo a memoria (DIME) para el almacenamiento de texturas gráficas. Hoy en día la podemos encontrar en las consolas NINTENDO 64.
DDR SDRAM: (Double Data Rate SDRAM o SDRAM-II). Funciona a velocidades de 83, 100 y 125MHz, pudiendo doblar estas velocidades en la transferencia de datos a memoria. En un futuro, esta velocidad puede incluso llegar a triplicarse o cuadriplicarse, con lo que se adaptaría a los nuevos procesadores. Este tipo de memoria tiene la ventaja de ser una extensión de la memoria SDRAM, con lo que facilita su implementación por la mayoría de los fabricantes.
SLDRAM: Funcionará a velocidades de 400MHz, alcanzando en modo doble 800MHz, con transferencias de 800MB/s, llegando a alcanzar 1,6GHz, 3,2GHz en modo doble, y hasta
4GB/s de transferencia. Se cree que puede ser la memoria a utilizar en los grandes servidores por la alta transferencia de datos.
ESDRAM: Este tipo de memoria funciona a 133MHz y alcanza transferencias de hasta 1,6
GB/s, pudiendo llegar a alcanzar en modo doble, con una velocidad de 150MHz hasta 3,2
GB/s.
La memoria FPM (Fast Page Mode) y la memoria EDO también se utilizan en tarjetas gráficas, pero existen además otros tipos de memoria DRAM, pero que SÓLO de utilizan en TARJETAS GRÁFICAS, y son los siguientes:
MDRAM (Multibank DRAM) Es increíblemente rápida, con transferencias de hasta 1 GIGA/s, pero su coste también es muy elevado.
SGRAM (Synchronous Graphic RAM) Ofrece las sorprendentes capacidades de la memoria SDRAM para las tarjetas gráficas. Es el tipo de memoria más popular en las nuevas tarjetas gráficas aceleradoras 3D.
VRAM Es como la memoria RAM normal, pero puede ser accedida al mismo tiempo por el monitor y por el procesador de la tarjeta gráfica, para suavizar la presentación gráfica en pantalla, es decir, se puede leer y escribir en ella al mismo tiempo.
WRAM (Window RAM) Permite leer y escribir información de la memoria al mismo tiempo, como en la VRAM, pero está optimizada para la presentación de un gran número de colores y para altas resoluciones de pantalla. Es un poco más económica que la anterior.
Para procesadores lentos, por ejemplo el 486, la memoria FPM era suficiente. Con procesadores más rápidos, como los Pentium de primera generación, se utilizaban memorias EDO. Con los últimos procesadores Pentium de segunda y tercera generación, la memoria SDRAM es la mejor solución.
La memoria más exigente es la PC100 (SDRAM a 100 MHz), necesaria para montar un AMD K6-2 o un Pentium a 350 MHz o más. Va a 100 MHz en vez de los 66 MHZ usuales.
SIMMs y DIMMs
Se trata de la forma en que se juntan los chips de memoria, del tipo que sean, para conectarse a la placa base del ordenador. Son unas plaquitas alargadas con conectores en un extremo; al conjunto se le llama módulo.
El número de conectores depende del bus de datos del microprocesador, que más que un autobús es la carretera por la que van los datos; el número de carriles de dicha carretera representaría el número de bits de información que puede manejar cada vez.
SIMMs: Single In-line Memory Module, con 30 ó 72 contactos. Los de 30 contactos pueden manejar 8 bits cada vez, por lo que en un 386 ó 486, que tiene un bus de datos de 32 bits, necesitamos usarlos de 4 en 4 módulos iguales. Miden unos 8,5 cm (30 c.) ó 10,5 cm (72 c.) y sus zócalos suelen ser de color blanco.
Los SIMMs de 72 contactos, más modernos, manejan 32 bits, por lo que se usan de 1 en
1 en los 486; en los Pentium se haría de 2 en 2 módulos (iguales), porque el bus de datos de los Pentium es el doble de grande (64 bits).
DIMMs: más alargados (unos 13 cm), con 168 contactos y en zócalos generalmente negros; llevan dos muescas para facilitar su correcta colocación. Pueden manejar 64 bits de una vez, por lo que pueden usarse de 1 en 1 en los Pentium, K6 y superiores. Existen para voltaje estándar (5 voltios) o reducido (3.3 V).
Y podríamos añadir los módulos SIP, que eran parecidos a los SIMM pero con frágiles patitas soldadas y que no se usan desde hace bastantes años, o cuando toda o parte de la memoria viene soldada en la placa (caso de algunos ordenadores de marca).
Otros tipos de RAM
BEDO (Burst-EDO): una evolución de la EDO, que envía ciertos datos en "ráfagas". Poco extendida, compite en prestaciones con la SDRAM.
Memorias con paridad: consisten en añadir a cualquiera de los tipos anteriores un chip que realiza una operación con los datos cuando entran en el chip y otra cuando salen. Si el resultado ha variado, se ha producido un error y los datos ya no son fiables. Dicho así, parece una ventaja; sin embargo, el ordenador sólo avisa de que el error se ha producido, no lo corrige. Es más, estos errores son tan improbables que la mayor parte de los chips no los sufren jamás aunque estén funcionando durante años; por ello, hace años que todas las memorias se fabrican sin paridad. ECC: memoria con corrección de errores. Puede ser de cualquier tipo, aunque sobre todo EDO- ECC o SDRAM-ECC. Detecta errores de datos y los corrige; para aplicaciones realmente críticas. Usada en servidores y mainframes. Memorias de Vídeo: para tarjetas gráficas. De menor a mayor rendimiento, pueden ser: DRAM -> FPM -> EDO -> VRAM -> WRAM -> SDRAM -> SGRAM
DDR-SDRAM: (Doble Data Rate)
¿Cómo es físicamente la DDR-SDRAM? O lo que es lo mismo: ¿puedo instalarla en mi
"antigua" placa base? Lamentablemente, la respuesta es un NO rotundo.
Los módulos de memoria DDR-SDRAM (o DDR) son del mismo tamaño que los DIMM de SDRAM, pero con más conectores: 184 pines en lugar de los 168 de la SDRAM normal.
Además, los DDR tienen 1 única muesca en lugar de las 2 de los DIMM "clásicos".
Los nuevos pines son absolutamente necesarios para implementar el sistema DDR, por no hablar de que se utiliza un voltaje distinto y que, sencillamente, tampoco nos serviría de nada poder instalarlos, porque necesitaríamos un chipset nuevo.
Hablando del voltaje: en principio debería ser de 2,5 V, una reducción del 30% respecto a los actuales 3,3 V de la SDRAM.
¿Cómo funciona la DDR-SDRAM?
Consiste en enviar los datos 2 veces por cada señal de reloj, una vez en cada extremo de la señal (el ascendente y el descendente), en lugar de enviar datos sólo en la parte ascendente de la señal.
De esta forma, un aparato con tecnología DDR que funcione con una señal de reloj "real", "física", de por ejemplo 100 MHz, enviará tantos datos como otro sin tecnología DDR que funcione a 200 MHz. Por ello, las velocidades de reloj de los aparatos DDR se suelen dar en lo que podríamosllamar "MHz efectivos o equivalentes" (en nuestro ejemplo, 200 MHz, "100 MHz x 2").
Uno de los problemas de la memoria Rambus: funciona a 266 MHz "físicos" o más, y resulta muy difícil (y cara) de fabricar.
La tecnología DDR está de moda últimamente, bajo éste u otro nombre. Además de las numerosísimas tarjetas gráficas con memoria de vídeo DDR-SDRAM, tenemos por ejemplo los microprocesadores AMD Athlon y Duron, cuyo bus de 200 MHz realmente es de "100 x 2", "100 MHz con doble aprovechamiento de señal"; o el AGP 2X ó 4X, con 66 MHz "físicos" aprovechados doble o cuádruplemente, ya que una tarjeta gráfica con un bus de 266 MHz "físicos" sería difícil de fabricar... y extremadamente cara.
(Atención, esto no quiere decir que una tarjeta AGP 4X sea en la realidad el doble de rápida que una
2X, ni mucho menos: a veces se "notan" IGUAL de rápidas, por motivos que no vienen al caso ahora.) Bien, pues la DDR-SDRAM es el concepto DDR aplicado a la memoria SDRAM. Y la SDRAM no es otra que nuestra conocida PC66, PC100 y PC133, la memoria que se utiliza actualmente en casi la totalidad de los PCs normales; los 133 MHz de la PC133 son ya una cosa difícil de superar sin subir mucho los precios, y por ello la introducción del DDR.
Tipos de DDR-SDRAM y nomenclatura
Por supuesto, existe memoria DDR de diferentes clases, categorías y precios.
Lo primero, puede funcionar a 100 o 133 MHz (de nuevo, "físicos"); algo lógico, ya que se trata de SDRAM con DDR, y la SDRAM funciona a 66, 100 ó 133 MHz (por cierto, no existe DDR a 66 MHz). Si consideramos los MHz "equivalentes", estaríamos ante memorias de 200 ó 266 MHz.
En el primer caso es capaz de transmitir 1,6 GB/s (1600 MB/s), y en el segundo 2,1 GB/s (2133 MB/s). Al principio se las conocía como PC200 y PC266, siguiendo el sistema de clasificación por MHz utilizado con la SDRAM. Pero llegó Rambus y decidió que sus memorias se llamarían PC600, PC700 y PC800, también según el sistema de los MHz. Como esto haría que parecieran muchísimo más rápidas que la DDR (algo que NO SUCEDE, porque funcionan de una forma completamente distinta), se decidió denominarlas según su capacidad de transferencia en MB/s: PC1600 y PC2100 (PC2133 es poco comercial, por lo visto).
2.1- ¿Cuánta memoria debo tener?
Se podría decir que: cuanta más memoria RAM, mejor. Claro está que la memoria RAM vale dinero, así que se intentara llegar a un compromiso satisfactorio, pero nunca quedándose cortos. Ante todo, de todas formas no nos podemos quejar en los precios: hasta antes del 1996 el costo de la memoria había mantenido un costo constante de alrededor de US 40 por megabyte . A finales de 1996 los precios se habían reducido a US 4 el megabyte (una caída del 901% en menos de un año). Hoy en día la memoria RAM está a menos de US 1 por megabyte.
La cantidad de RAM necesaria es función únicamente de para qué se use un ordenador, lo que condiciona a qué sistema operativo y programas se van a usar, se recomienda una cantidad mínima de 64 MB de RAM, y si es posible incluso 128.
¿Cuánta memoria es "suficiente"?
En el mundo de los computadores, la duda siempre parece estar en si comprar un microprocesador
Intel o AMD, en si será un Pentium III o un Athlon, un Celeron o un K6-2, y a cuántos MHz
funcionará. Cuando se llega al tema de la memoria, la mayor parte de los compradores aceptan la cantidad que trae el sistema por defecto, lo que puede ser un gran error.
Lo más importante al comprar un computador es que sea equilibrado; nada de 800 MHz para sólo 32
MB de memoria RAM, o una tarjeta 3D de alta gama para un monitor pequeño y de mala calidad. Y como intentaremos demostrar, la cantidad de memoria del PC es uno de los factores que más puede afectar al rendimiento.
Por cierto, este trabajo se centrará en Windows 95 y 98, ya que son con diferencia los sistemas operativos más utilizados. Los resultados son perfectamente aplicables a Linux, "excepto" por su mayor estabilidad y mejor aprovechamiento de la memoria; en cuanto a Windows NT 4 y 2000, actúan de forma similar a Linux, si bien consumen entre 16 y 40 MB más de memoria que los Windows
"domésticos".
Windows y la memoria virtual
Por supuesto, cuantos más programas utilicemos y más complejos sean, más memoria necesitaremos; esto seguro que no sorprenderá a nadie, pero lo que sí puede que nos sorprenda es la gran cantidad de memoria que se utiliza tan sólo para arrancar el sistema operativo. Observen los siguientes datos:
Programas cargados RAM utilizada
Sólo Windows 95 21 MB
Sólo Windows 98 27 MB
Sólo Windows 98, tras varios meses de funcionamiento y diversas 35 MB
instalaciones de programas
Windows 98, Microsoft Word 97 e Internet Explorer 4 46 MB
Windows 98 y AutoCAD 14 (con un dibujo sencillo en 2D) 55 MB
Como puede ver, sólo la carga del sistema operativo puede consumir TODA la memoria con la que se venden algunos computadores de gama baja. Además, Windows 98 utiliza más memoria que Windows
95 debido entre otros temas a su integración con Microsoft Internet Explorer. Para terminar de complicar el tema, ambos Windows tienden a aumentar su tamaño y su consumo de memoria según vamos instalando programas, o sencillamente según pasa el tiempo, sin instalar nada.
Pese a esto, el hecho es que los computadores siguen trabajando cuando se les agota la memoria RAM, algo que sería imposible si no fuera por la denominada "memoria virtual", que no es sino espacio del disco duro que se utiliza como si fuera memoria RAM.
Sin embargo, esta memoria virtual tiene varios inconvenientes; el principal es su velocidad, ya que es muchísimo más lenta que la RAM. Mientras la velocidad de acceso a la RAM se mide en nanosegundos (ns, la 0,000000001 parte de un segundo), la de los discos duros se mide en milisegundos; es decir, que se tarda casi un millón de veces más en acceder a un dato que encuentra en el disco duro que a uno de la RAM.
Por ende, lo ideal es necesitar lo menos posible la memoria virtual, y para eso evidentemente hay que tener la mayor cantidad de memoria RAM posible.
Actualizar la memoria RAM
1.- Identificar el tipo de memoria que utiliza su ordenador. La fuente más apropiada de información a este respecto es el manual de la placa base, aunque en general:
MICROPROCESADOR MEMORIA TÍPICA NOTAS
386 DRAM o FPM en módulos SIMM de 30 Memoria difícil de encontrar,
contactos, de unos 100 u 80 ns
actualización poco interesante
486 lentos FPM en módulos SIMM de 30 contactos, de Típico de DX-33 o velocidades
80 ó 70 ns
inferiores
486 rápidos FPM en módulos SIMM de 72 contactos, de Típico de DX2-66 o superiores
Pentium lentos
70 ó 60 ns, a veces junto a módulos de 30 y Pentium 60 ó 66 MHz
contactos
Pentium FPM o EDO en módulos SIMM de 72
contactos, de 70 ó 60 ns
Pentium MMX EDO en módulos SIMM de 72 contactos, de
AMD K6
60 ó 50 ns
Celeron
SDRAM de 66 MHz en módulos DIMM de Suelen admitir también PC100
Pentium II hasta 350 168 contactos, de menos de 20 ns
MHz
o PC133; también en algunos
K6-2
Pentium II 350 MHz o SDRAM de 100 MHz (PC100) en módulos Aún muy utilizada; suelen
más
Pentium III AMD K6-2
AMD K6-III AMD K7 Athlon
DIMM de 168 contactos, de menos de 10 ns
admitir también PC133
Pentium III SDRAM de 133 MHz (PC133) en módulos La memoria más utilizada en
Coppermine
(de 533 MHz o más) AMD K7 Athlon AMD Duron
DIMM de 168 contactos, de menos de 8 ns
la actualidad
La memoria ROM se caracteriza porque solamente puede ser leída (ROM=Read Only Memory). Alberga una información esencial para el funcionamiento del computador, que por lo tanto no puede ser modificada porque ello haría imposible la continuidad de ese funcionamiento.
Uno de los elementos más característicos de la memoria ROM, es el BIOS, (Basic Input- Output System = sistema básico de entrada y salida de datos) que contiene un sistema de programas mediante el cual el computador "arranca" o "inicializa", y que están "escritos" en forma permanente en un circuito de los denominados CHIPS que forman parte de los componentes físicos del computador, llamados "hardware".

No hay comentarios:

Publicar un comentario